On a Fourth Order Curvature Invariant

نویسندگان

  • Sun-Yung A. Chang
  • Paul C. Yang
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of conformal metrics on S n with prescribed fourth order invariant

In this paper we prescribe a fourth order conformal invariant on the standard n-sphere, with n≥5 , and study the related fourth order elliptic equation. We first find some existence results in the perturbative case. After some blow up analysis we build a homotopy to pass from the perturbative case to the non-perturbative one under some flatness condition. Finally we state some existence results...

متن کامل

Constant T -curvature conformal metrics on 4-manifolds with boundary

In this paper we prove that, given a compact four dimensional smooth Riemannian manifold (M, g) with smooth boundary there exists a metric conformal to g with constant T -curvature, zero Q-curvature and zero mean curvature under generic and conformally invariant assumptions. The problem amounts to solving a fourth order nonlinear elliptic boundary value problem (BVP) with boundary conditions gi...

متن کامل

Ghost-Free, Finite, Fourth-Order D 1⁄4 3 Gravity

S. Deser* Physics Department, Brandeis University, Waltham Massachusetts 02454, USA and Lauritsen Laboratory, California Institute of Technology, Pasadena California 91125, USA (Received 28 April 2009; published 2 September 2009) Canonical analysis of a recently proposed linearþ quadratic curvature gravity model in D 1⁄4 3 establishes its pure, irreducibly fourth derivative, quadratic curvature...

متن کامل

ar X iv : 0 80 2 . 07 23 v 1 [ he p - th ] 5 F eb 2 00 8 Local geometry of the G 2 moduli space

We consider deformations of torsion-freeG2 structures, defined by theG2-invariant 3-form φ and compute the expansion of ∗φ to fourth order in the deformations of φ. By considering M -theory compactified on a G2 manifold, the G2 moduli space is naturally complexified, and we get a Kähler metric on it. Using the expansion of ∗φ we work out the full curvature of this metric and relate it to the Yu...

متن کامل

Curvature-based gauge-invariant perturbation theory for gravity: a new paradigm

A new approach to gravitational gauge-invariant perturbation theory begins from the fourth-order Einstein-Ricci system, a hyperbolic formulation of gravity for arbitrary lapse and shift whose centerpiece is a wave equation for curvature. In the Minkowski and Schwarzschild backgrounds, an intertwining operator procedure is used to separate physical gauge-invariant curvature perturbations from un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013